Free Delivery on orders over £999 - Buy Now, Pay Later with Klarna

SHARE

Occlusion Cuffs

The Occlusion Cuffs allow you to have the benefits of training at 70% of your maximum, when performing loads are as low as only 20-30% of your maximum.

The Occlusion Cuff® increases muscle strength, muscle size, and muscle endurance with low loads making it ideal for rehabilitation and everyday training.

£118.80 inc.Vat | £99.00 ex.VAT

In stock

SKU: PB216

Description

The design allows the Occlusion Cuffs to be used with even the largest limb sizes, while also fitting comfortably on lighter athletes.

There are a number of features that allow the user flexibility and freedom to wear the Occlusion Cuffs in different ways during training.

The J-clip feature allows the user to disconnect the pump and gauge during their training, while maintaining cuff pressure.

The gauge design allows it to be worn on shorts/trouser when training. Although caution is recommended to minimise the risk of dislodging and damaging the gauge.

The string-tie feature allows the user to hold the pump and gauge system in place at the level of the cuff if desired, by tying them to the Occlusion Cuff.

The string-ties can also be used to prevent slippage of the cuff layers where necessary. Although this can also be prevented by ensuring that the cuff layers are wrapped snugly around a limb before inflating.

Cuff Dimensions: 85 x 7cm + 35cm extension

Each set contains:

2x Occlusion Cuff Elite, 1x Manual Pump / Sphygmomanometer, 1x Tubing, 1x Instructions

Applying The Occlusion Cuff to the legs or arms limits the amount of blood flow returning to the heart. This is known as blood flow restriction training. This training technique stimulates a number of beneficial changes in the body which can result in:

• Increase in muscle size and strength

• Improve endurance

• Pain reduction

Light resistance training with The Occlusion Cuff has been scientifically proven to increase muscle size and strength similar to that of heavy resistance training.

Technical specifications

Weight 1 kg
Dimensions 22 × 11 × 10 cm

The idea for occlusion training originated in Japan during the 1960’s when a young man who was kneeling at a Buddhist temple felt his calves become numb. After much experimentation, figuring out how this happens and the best way to reproduce it in a controlled manner, ‘Kaatsu’ training began to be practiced in the 1970’s.
The basis of occlusion training, as it is now known in the western world, is that we are aiming to minimise the venous outflow from a muscle, while also reducing the arterial inflow (shown in early studies by Takarada et al., 2000, and Takarada et al., 2002). Subsequently what happens is that we get changes in:

muscle oxygenation
fibre type recruitment
metabolic accumulation
growth hormone response
stimulation of protein synthesis
muscle growth inhibitors

These processes are reviewed in detail in a paper published in 2013 by Zachary Pope, Jeffrey Willardson, and Brad Schoenfeld, titled Exercise and Blood Flow Restriction and in the work of the lead researcher in the area Jeremy P. Loenneke who has published numerous studies on the topic of occlusion training.

When the blood flow is occluded lactate accumulates, increasing metabolic demand and stimulating many physiological responses (as well as making you feel like you’re constantly in the middle of an anaerobic training session!).

With the reduced oxygen supply to the muscles we can’t recruit as many Type 1, slow twitch fibres as they rely on oxygen to contract. As a result we get earlier activation of the Type 2 (x-II), fast twitch fibres that are anaerobically driven. These fibres characteristically produce high forces and display hypertrophy. So we have a scenario where the occlusion training is targeting the muscles that are most likely to increase strength and size. Also, they fatigue quicker, so you feel tired. Very tired.

Growth hormone is also stimulated to levels far beyond that of regular exercise, with studies showing 200-300% increases in the involved muscles with occlusion training.

Protein synthesis is an essential muscular response to training that stimulates growth and development. Blood flow occlusion when exercise training has been shown to result in over 50% more muscle protein synthesis than a traditional exercise-training program. This protein synthesis response was observed to be elevated for up to three hours post occlusion training.

When we exercise some genes (e.g. myostatin) are expressed that regulate overgrowth of muscles, and so can be inhibitory to hypertrophy. The evidence shows that blood flow occlusion can reduce the expression of myostatin, possibly by reducing the information returning to the genes, subsequently causing better muscle development.

The American College of Sports Medicine (ACSM) guidelines state that loads of at least 70% of an individual’s 1-repetition maximum are needed to stimulate muscle hypertrophy. However, when occluding blood-flow, loads as low as 20% can stimulate muscle growth and hypertrophy. This has huge potential benefit with rehabilitation, as typically we have to perform exercise with much lighter loads when injured. This benefit is particularly relevant for post-operative patients, for whom minimising muscle wastage (atrophy) is a priority. Additionally, research has found that occlusion training can increase cardiorespiratory endurance in shorter durations than traditional exercise, and local muscular endurance.

With hundreds of academic papers published on the topic of occlusion training this description only serves as an introduction to the physiological effects and benefits of occlusion training. The level of detail that could be delved into would have made this post a thesis had we discussed everything. So we will discuss each point in the detail it deserves in the next while.

There has also been a particularly busy flurry of recently published articles looking at a variety of applications for occlusion training. This means a lot of reading to do in order to keep up with what is a rapidly progressing phenomenon.